Open Journal Systems

First principle study optical properties of CH3NH3PbI3 and CH3NH3SnI3 for perovskite photovoltaics

Geoffrey Tse Dapeng Yu

crossmark logo side by side horizontal

Abstract


Tetragonal perovskite structure of methyl-ammonium metal iodide CH3NH3MI3 (M=Sn, Pb) was investigated, with space group of #99 with P4mm, lattice parameter of a = b = 6.6718Å, c = 6.4101Å, bond angle of α = β = γ = 90˚.  The electronic structure, parital density of states (DOS) and optical calculations were performed, with generalized gradient approximations (GGA). These investigations were carried out using ab initio density functional theory (DFT) calculations. To conclude, the direct bandgap was opened up to 1.9eV (Sn=0.2). We obtained a comprehensive data set, not to mention the optical absorption, with the peak value reported to be 358.2eV (Sn=302.9), but also the conductivity, reflectivity, refractive index and the electron loss function. This will be useful to experimentalist, in fabrication of an enhanced solar cell.


Full Text:

PDF

References


I. Chung, B. Lee, J. He, R. P. H. Chang, and G. Kanatzidis, Nature 485 486 (2012)

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338 643 (2012)

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature 499, 316 (2013)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Gratzel, J. Am. Chem. Soc. 134, 17396(2012)

H. Jin, J. Im, and A. J. Freeman Phys. Rev. B 86, 121102 (2012).

Y. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, Dalton Trans. 40, 5563 (2011).

Lang, L., Yang, J. H., Liu, H. R., Xiang, H. J., & Gong, X. G. Physics Letters A, 378(3), 290-293 (2014)

Umari, P., Mosconi, E., & De Angelis, F. Scientific reports, 4. (2014)

Bernal, C., & Yang, K. The Journal of Physical Chemistry C, 118(42), 24383-24388 (2014)

C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito, Nat. Commun. 6:7206 (2015)

Tse, G., J. Pal, U. Monteverde, R. Garg, V. Haxha, M. A. Migliorato, and S. Tomic, J. App. Phys. 114 (7), 073515 (2013)

Pal, J., G. Tse, V. Haxha, M. Migliorato, and S. Tomic, Optical and Quantum Electronics 44, 195 (2012)

H. Y. S. Al-Zahrani, J. Pal, Migliorato, M. A., Nano Energy 2 (6), 1214-1217 (2013)

H. Y. S. Al-Zahrani, J. Pal, G. Tse, D. Yu, Migliorato, M. A., Nano Energy 14, 382-391 (2015)

G. Tse, D. Yu, The first principle study of electronic and optical properties in Rhombohedral BiAlO3, Mod. Phys. Lett. B (in press)

G. Tse, D. Yu, The bandgap distribution investigated across the strain-induced bending ZnO nanowire, Mod. Phys. Lett. B (in press)

G. Tse, D. Yu, Computational Condensed Matter 4 59 (2015)

Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864-B871 (1964)

Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133-A1138, (1965)

H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976)

R. Fu, M.H Lee, M.C Payne, J. Phys.: Condens. Matter 8, 2539–2548 (1996)

Lin J-S, Qteish A, Payne M C and Heine V Phys. Rev. B 47, 4174 (1993)

Rappe A M, Rabe K M, Kaxiras K and Joannopoulos J D Phys. Rev. B 41, 1227 (1990)

Heine V (1970) Solid State Physics vol 24 (New York: Academic)

N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993(1991)

D. Vanderbilt. Phys. Rev. B 41 7892(1990)

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Zeitschrift fuer Kristallographie, 220(5-6) pp. 567-570 (2005)

D.Sanchez-Portal, I. Souza, R.M Martin, Fundamental of Ferroelectrics, AIP Conf. Proc. Vol. 535, ed R. Cohen, Melville AIP, pp 111-120 (2000)

D.Sanchez-Portal, I. Souza, R.M Martin, Fundamental of Ferroelectrics, AIP Conf. Proc. Vol. 535, ed R. Cohen, Melville AIP, pp 111-120 (2000)

K. Schwarz, P. Blaha, Comp. Mater. Sci. 28, 259 (2003)

H. Ehrenreich, M.L. Cohen, Physical Review 115, 786–794 (1959)

M. Arbi, N. Benramdane, Z. Kebbab, R. Miloua, F. Chiker, R. Khenata, Mater. Sci. Semi. Proc. 15, 301–307(2012)

C. Ambrosch-Draxl, J.O. Sofo, Computer Physics Communications 1, 175–214 (2006)

B. Lee, R.E. Rudd, J.E. Klepeis, R. Becker, Phys. Rev. B 77 (2008) 134105.

J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, Oxford, 1985.

J.J. Wang, F.Y. Meng, X.Q. Ma, M.X. Xu, L.Q. Chen, J. Appl. Phys. 108 (2010)

R. Hill, Proc. Phys. Soc. London, Sect. A 65 (1952) 349

W. Voight, Lehrbuch der Kristallphysik, Teubner, Leipzig, 1928. 739

A.Z. Reuss, Angew. Math. Mech. 9 (1929) 49

P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Erikson, J. Appl.

Phys. 84 (1998) 4891.

D.H. Chung, W.R. Buessem, Anisotropy in Single Crystal Refractory Compound, in: F.W. Vahldiek, S.A. Mersol (Eds.), Plenum, New York, 1968, p. 328.

G. Tse, Ph. D Thesis, The University of Mancehster, U.K (2012)

L. Lang, J.H. Yang, H.R. Liu, H.J. Xiang, X.G. Gong, Phys. Lett. A 378 (3) 290-293 (2014)

U. Koroglu, S. Cabuk, E Deligoz, J. Alloys Compd. 574 (2013) 520-525




DOI: http://dx.doi.org/10.15520/ajcem.2015.vol4.iss5.37.pp49-55.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.